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Numerical solutions are presented for steady laminar two-dimensional natural convection 
in concentric and eccentric horizontal cylindrical annuli with constant heat flux on the 
inner wall and a specified isothermal temperature on the outer wall. The heat and fluid 
flow patterns in the annuli are vividly visualized by means of the contour maps of streamlines 
and heatlines. Results of the parametric study conducted further reveal that the influence 
of the Prandtl number is quite weak; the heat and fluid flows are primarily dependent on 
the modified Rayleigh number and the eccentricity of the annulus. Above all, the 
specification of different thermal boundary conditions has a significant effect on the average 
heat transfer rate across the annulus. 
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Introduction 

The problem of natural convection heat transfer across a 
horizontal cylindrical annulus has received considerable 
attention in view of its fundamental importance germane to 
numerous engineering applications. As a result, extensive experi- 
mental and theoretical works dealing with the flow and associated 
heat transfer characteristics of natural convection in such 
configuration have been reported in the literature. Compre- 
hensive reviews on natural convection in concentric and eccentric 
annuli are available, T M  and there is no need to repeat them. 
However, most of the previous studies are concerned with the 
horizontal annulus enclosed by two isothermal cylinders; little 
attention has been paid to annuli with other types of thermal 
boundary conditions of engineering interest. Van de Sande and 
Hamer 5 have obtained empirical correlations for natural con- 
vection heat transfer in concentric and eccentric annuli of 
constant heat flux. Recently, Glakpe et al. 4 presented a numerical 
solution for air in concentric and eccentric configurations with 
specified constant heat flux at the boundaries. 

To further extend the existing knowledge on natural con- 
vection heat transfer in horizontal cylindrical annulus, the 
consideration in the present study is given to laminar steady 
natural convection in concentric and eccentric horizontal 
cylindrical annuli with mixed boundary conditions. Specifically, 
the outer cylinder of the annulus is maintained isothermal at 
To while the inner cylinder is subjected to a uniform constant 
heat flux ql. Numerical solutions of the physical configuration 
described above have been obtained by solving the governing 
partial differential equations. After the present study was 
completed, two numerical works on the similar problem were 
recently reported. 6'v Kumar 6 considered natural convection of 
air in a concentric horizontal annulus of various diameter ratio 
between 1.2 to 10 with mixed boundary conditions. Glakpe 
and Watkins v addressed the effect of mixed boundary conditions 
on the natural convection in an air-filled concentric and 
eccentric annulus of diameter ratio fixed at 2.2; however, only 
a downward vertical eccentricity of 0.5 was considered for the 
eccentric geometry. It follows that despite the similarity between 
the physical configuration under consideration, there are differ- 
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ences in the medium nature and the geometric configuration 
between these two earlier studies and the present work. Still, 
comparisons were attempted, if possible, between the present 
computations and the results available in Refs. 6 and 7. In the 
present work, the effects of the mixed thermal boundary 
conditions on the heat and fluid flow across the annulus are 
vividly visualized by means of the contour maps of streamlines 
and heatlines. Heat transfer results of extensive parametric 
studies are presented also. 

Formulation and numerical method 

The geometric configuration under study here is a concentric 
or vertically eccentric arrangement of two horizontal circular 
cylinders of radii r~ and r o. The downward eccentricity of the 
inner cylinder is denoted as positive e. The outer cylinder is 
cooled at a fixed temperature To while the inner cylinder is 
heated with a constant heat flux qi. It is assumed that the flow 
in the annulus is laminar, steady, and two-dimensional. All fluid 
properties, except the density in the buoyancy force term, are 
taken to be constants. Also, it is assumed that the flow is 
symmetric about a vertical plane through the axis of the 
cylinder. Accordingly, attention is confined to the half-annulus 
only. 

To deal with the numerical difficulty associated with the 
complex physical domain of the eccentric annulus, a radial 
coordinate transformation s is adopted to map the eccentric 
annular gap into a unit circle. The radial coordinate trans- 
formation is achieved by defining a new radial coordinate as 

= ( r  - R i ) / ( F ( c k  + ) - R i )  (1) 
where F(~ +) denotes the dimensionless radial profile of the 
outer cylinder measured from the center of the inner cylinder 
and is given as 

F(dp+)=[R2- -e  2 sin2(qS+)]l/2--e cos(q~ +) (2) 

The dimensionless equations governing the steady fluid 
motion in the horizontal annulus, using the Oberbeck- 
Boussinesq approximation and neglecting viscous dissipation 
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and compressibility effects, are then given in vorticity-stream 
function formulation as follows: 

l Oq(OqtOo9 d~O 0of] = pr ~2o9 + pr  Ra.  

~r Or \04~ Oq Or/04U 

• [sin(n0) O, dO+cos(nO) {dO O, O0"~-] 
o or/ ,<r (3) 

92~k = - ~o (4 )  

1 o, oo ,2  0 
,<r Or \77  (5) 

where 

dr/ 1 
- ( 6 a )  

dr F -  R i 

dr/ -- q dF 
- ( 6 b )  

dck F--R~ ddp 
- -1  ( d2F A 017 dF'\ 

d2r/-F~_R i ".r/ d~ b2 ~ + 2 ~ )  (6c) 

~2 [ ( d r / ~  2 (1C3r / ) ]  d2 2 dr/ d 2 1 d 2 

= L\~ / - \~  ~ ~ "{" ( ~ r )  2 d~l~ d r /d ( ] )  ~ (7~r) 2 d(~) 2 

1 dr/ 1 d2r/] d (6d) 
+ r d~ q" (71:r) 2 ~ . J  dr/ 

The associated boundary conditions for the problem considered 
are 

dO 
~b=0 or 1: =~O=~o=0 (7a) 

do ~ =d~O=o r/=0: =Ri-F. (7b) 
dr/ dr/ 

r /= l :  0=0.  ¢ = d ¢ = 0  (7c) 
dr/ 

From the above formulation, the governing parameters for 
the present problem are thus the modified Rayleigh number 
Ra*, the Prandtl number Pr, the radius ratio rffri, and the 
eccentricity e. 

Equations 3-7 are solved by a finite difference method. Finite 
difference equations were derived by using central difference 
approximations for the partial derivatives except the convective 
terms for which a quadratic upwind difference formula was 
employed. 9 At grids adjacent to the solid boundaries where the 
quadratic upwind differencing scheme was not applied, the 
second upwind scheme was used. The finite difference analogue 
of the governing equations along with the boundary conditions 
was then solved by iteration. The equations of temperature and 
vorticity were solved by successive line relaxation method, l° 
while the stream function equation was solved by the modified 
strongly implicit (M SI) procedure. 11 The solution was considered 
convergent when the relative error between the new and old 
values of the field variables (w, ~,, and 0) becomes less than a 
prescribed criterion (10-5). Further, the convergence of the 
steady-state solution was verified by checking the balance 
between the overall heat transfer rate at the inner and outer 
cylinder within 1%. A nonuniform grid field has been used for 
the radial direction, which has a smoothly varying grid spacing 
with a denser grid near both the inner and outer walls of the 
annulus to account for the boundary layers formed in these 
regions. Based on several trial cases, suitable grid systems were 
selected for the present calculations. Two different grid systems 
depending on the geometry have been used for the calculations: 
45 (radial direction) by 41 (angular direction) for e=0  and 51 
by 45 for e = +_ 0.625. The computations were performed on an 
IBM 4381 computer and required less than 1200 CPU seconds 
for a typical case. 

R e s u l t s  a n d  d i s c u s s i o n  

Numerical calculations have been performed systematically for 
an annulus of radius ratio fixed at 2.6 to investigate the 
parametric influences on the heat and fluid flow patterns and 

N o t a t i o n  

e Vertical eccentricity 
F ÷ Radial profile of outer cylinder 
F Dimensionless radial profile of outer cylinder, F÷/L 
g Gravitational acceleration 
h Heat transfer coefficient 
H Dimensionless heat function, Equation 8 
k Thermal conductivity 
L Annular gap, r o -  r i 
Nu Nusselt number, hL/k 
Pr Prandtl number 
q Heat flux 
r + Radial coordinate 
r Dimensionless coordinate, r+/L 
Ra Rayleigh number, gflLaAT/vct 
Ra* Modified Rayleigh number, gflqiL4/kvct 
ri Radius of inner cylinder 
R~ Dimensionless radius of inner cylinder, rdL 
ro Radius of outer cylinder 
Ro Dimensionless radius of outer cylinder, rolL 
T Temperature 
AT Average temperature difference between cylinders 
V ÷ Velocity 

V Dimensionless velocity, V÷L/~ 

Greek 
Ct 

E 

r~ 
0 
V 

P 

4, 

(O + 

O) 

symbols 
Thermal diffusivity 
Thermal expansion coefficient 
Dimensionless vertical eccentricity elL 
Radial coordinate in transformed plane 
Dimensionless temperature, (T-To)k/qiL 
Kinematic viscosity 
Density 
Angular coordinate 
Dimensionless angular coordinate, q~+/n 
Stream function 
Dimensionless stream function, ~k+/~t 
Vorticity 
Dimensionless vorticity, co+L2/ct 

Subscripts 
i, o Inner and outer 
r Radial direction 
~b Angular direction 

Superscript 
- -  Circumferentially averaged quantity 
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Ra*:103 

0max=0.696,~min=-l.322 0max=0.6951,0min=-l.3226 
Hmin=0.000,Hmax=l.9635 Hmin=0.0000,Hmax=l.96350 

Ra*=lO 5 

Omax=O. 3479 ,~min=-17 . 272 @max=O.3199,~min =-17.372 

Hmi n =- . 7912, Hmax = i . 96350 Hm i n =- ' 9344 , Hma x = 1 . 9635 

Pr = O. 7 Pr = 1 O0 . 

Figure I Inf luence of the modif ied Rayleigh number on heat and 
fluid f lows. Streamlines (right) and heatlines (left) and isotherms 
(dashed lines) 

heat transfer rate of the problem considered in the present 
study. The ranges of governing parameters covered in the 
calculations are 0 .7<Pr<100 ,  103 < Ra* =<106, and e=0,  
_+ 0.625. 

Heat  a n d  f l u i d  f l ows  

In order to provide vivid visualization of convective heat flow 
pattern within the horizontal annulus, the concept of heat 
function introduced by Kiura and Bejan 12 is adopted in the 
present study. Here a dimensionless heat function H is defined as 

1 0H 00 
- - =  V , O - - -  (8a) 

r 0~ Or 

OH 1 00 
- - - =  V , O -  - -  (8b) 

Or r 0~ 

The computed heat and fluid flows will be presented qualitatively 
by means of streamlines, heatlines, and isotherm contour plots. 
The streamlines are plotted on the right half of the annulus, 
while the heatlines (solid lines) and isotherms (dashed lines) 
are drawn on the left half. 

Figure 1 shows the effect of the modified Rayleigh number 
on the heat and fluid flow patterns in the concentric annulus 
for Pr=0.7  and 100. At low Ra* (103) the fluid flow in the 
half-annulus is weak and forms a symmetrical recirculation in 
the clockwise direction. With specified heat flux condition on the 
inner cylinder, some isotherms, as expected, originate from the 
inner wall of the annulus. The isotherms are nearly circular, 
further indicating little influence of the convective flow on heat 
transfer. Examination of the heatline distribution also reveals 
that heat leaving the inner cylinder is channeled rather directly 
to the outer cylinder as expected for the pseudoconduction heat 
transfer regime. Moreover, it appears that the Prandtl number 
has no apparent effect on the heat and fluid flow patterns at 
such a low value of Ra*. As Ra* increases, the fluid motion 

becomes stronger, as indicated by the increased absolute value 
of the stream function and the vortex center of the eddy shifts 
upward. At Ra*= l0 s, the isotherm patterns exhibit features 
somewhat similar to those of the convection-dominated regime 
for isothermal boundary conditions available in the literature. 
A rather isothermal region at the bottom of the annulus can 
be readily observed. Furthermore, the heatline distribution in 
the figure indicates that heat from the inner cylinder is via 
thermal plume activity funneled through the top region above 
the inner cylinder, as evidenced by the clustered heatlines in 
the region, and then redistributed toward the outer cylinder, 
resulting in a core region with closed loops of heatlines that 
cannot release its enthalpy to the outer cylinder. Moreover, 
Figure 1 reveals that with increasing Ra*, the heat-receiving 
region along the outer cylinder, where the heatlines end, 
becomes gradually smaller and tends to be restricted in the 
upper portion. That is, at high Ra* heat from the inner wall 
is mainly transported to the upper half of the outer cylinder. 
The large gradient in the heatlines adjacent to the heated 
cylinder is due primarily to the rapid fluid motion. This signifies 
a convection-dominated heat flow across the annulus. Also, the 
recirculating heat flow pattern in the core region resembles that 
of recirculating fluid flow in the annulus. 

Figure 2 presents the influence of the Prandtl number on the 
heat and fluid flows within the concentric annulus at Ra* = 106. 
As the Prandtl number is increased from 0.7 to 7.0, the vortex 
center of recirculating flow moves closer to the symmetry line, 
and the isotherm and heatline distributions are significantly 
changed. With further increase of Pr, it can be readily seen 
from the figure that, for Pr > 7.0, the variation of the Prandtl 
number produces no apparent effect on the heat and fluid flow 
patterns. Such finding about the effect of Pr on heat and fluid 
flow in the concentric annulus is similar to that reported for 
isothermal boundaries. ~3"14 

Next, the heat and fluid flow patterns for the eccentric 
configurations considered in this study will be examined. Figures 
3 and 4 illustrate the streamline, isotherm, and heatline distri- 

8max=O. 2294, @min=-32. 245 Omax=O. 2117 , ~min=-39. 253 

Hmin=-1 . 191 ,Hmax=1.9635 Hmin=-1.809,Hmax=1.9635 

8max=O.2061,~min=-39.466 Omax=O.2055,~min=-39.697 

Hmin=-l.850,Hmax =1.9635 Hmin=-l.853,Hmax=l.9635 

Ra*=lO 6 

Figure 2 Effect of the Prandtl number on heat and fluid flows for 
concentric annuli at Ra* = 106 
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Ra*:lO 3 

emax=O.6484,~min=-2.8163 Omax=O'6381,~min =-2.8817 
Hmin=O.OOOO,Hmax=l.9635 

Omax=O-4447,~min=-lO.578 
Hmin=-O.155,Hmax=l.9635 

Hmin=O.OOOO,Hmax=l.9635 

Ra*=lO 4 

8max=0.4251,~min=-1~,l16 
Hmin=-0-245,Hmax=l.9635 

heat transfer characteristics along the inner cylinder. The 
circumferential temperature distribution along the inner cylinder 
at various Ra* and Pr are presented in Figures 5-7 for the 
three configurations under study. Note that in the present 
normalization the local Nusselt number along the inner cylinder 
is simply the inverse of the dimensionless surface temperature. 
Thus the angular variations of the local Nusselt number under 
various conditions can be deduced from these figures. Common 
to the results displayed for the three geometries is that as the 
modified Rayleigh number increases, the local dimensionless 
surface temperature of the inner cylinder decreases, indicative 
of a higher rate of heat transfer due to the stronger buoyancy 
flow in the annulus. For the concentric annulus, as expected, 
an isothermal surface temperature profile occurs for pure 
conduction, Ra*=0  as illustrated in Figure 5. The enhanced 
convective fluid flow in the annulus with increasing Ra* causes 
a significant variation of the surface temperature along the 
circumference of the inner cylinder at Ra*= 10 3. The local 
surface temperature increases from the bottom to the top of 
the inner cylinder. As Ra* further increases, the magnitude of 
the circumferential variation of surface temperature is greatly 
diminished except in the region of thermal plume having a 
distinct temperature rise. 

Similar observations can be made for the positive eccentric 
geometry considered (Figure 6). As for the negative eccentric 
annulus, Figure 7, the temperature profile along the inner 

a*:lO 6 

Ra*=lO 

eH~::=° l'ii:i'i~ia: =-145961~s 0 . : : :  . . . . . .  °311!: :0~0:: :69:::' 

625 1 

Figure 3 Heat and fluid f low patterns for positive eccentric annuli, 
e=0.625, at different Ra* and Pr 

butions at various Ra* and Pr for positive and negative 
eccentricity, respectively. For positive eccentric geometry (Figure 
3) it is evident that the convective flows are both larger and 
stronger than for the concentric annulus. Within such favorable 
configuration for convective motion, the qualitative features of 
heatline and isotherm distributions depicted previously for the 
concentric geometry are observed to be further pronounced. 
At high Ra*, the expanse of the heat-receiving region on the 
outer wall is considerably extended for the positive eccentric 
arrangement in contrast to the concentric annulus. On the other 
end, the negative eccentric geometry provides least favored 
circumstance for the development of natural convection. Both 
the size and strength of the fluid flow are markedly reduced as 
shown in Figure 4. The heatlines in the figure reveal that with 
the enlarged isothermal zone in the bottom of the negative 
eccentric annulus at Ra*> 10 4 heat from the inner wall flows 
primarily toward the top portion of the outer cylinder. Also, 
the weak effect of the Prandtl number on the heat and fluid 
flow patterns for the eccentric geometries considered can be 
readily inferred from Figures 3 and 4. 

Surface temperature o f  inner cyl inder 

For the specified uniform heat flux condition on the inner 
cylinder, the surface temperature is one of the important 
variables in the present calculations, since it can reflect the local 

Omax=O.5629,~min=-].5345 
Hmin=O.OOOO,Hmax=l.96350 

IRa*:10 

emaxIO.4683.~minm-5.0957 
Hm±n:-.lO22.Hmax=1.9635 

Omax=O.5574,@min=-l.5389 
Hmin=O.OOOO,Hmax=1.96350 

Omax=O.448,~min = -5.139 
Hmin=-.t04 ,Hmax=l.9635 

Ra%106 

emax=O.2584,~min=-21.548 
Hmin=-.5824,Hmax=l.9635 emax=O'2365,0min ~-22"981 

Hmin=-.7212,Hma×=l.9635 
c :-0.625 

Pr=O.7 Pr=100, 

Figure 4 Heat and fluid f low patterns for negative eccentric annuli, 
e= - 0 . 6 2 5 ,  at different Ra* and Pr 
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1.0 
: P r  = 0 . 7 0  

. . . . . . . . . . . .  : = 7 . 0 0  

. . . . .  : = 1 0 0 .  

0 .  

Ra*=O.O 
0 . 6  / / 

0.4 

/ ~ 1 0  5 

0.2 f - ~  - - ~  i 50, 
• i i i i J I I I I I 

0.0 30.0 60.0 90.0 120. 150. 180. 

t~÷( degree ) 

Figure 5 Local surface temperature distribution on the inner 
cylinder for e=O.O 

1"0 / / : Pr : 0.70 

F .. . . . . . . . . . . . . . .  : ° 7 . 0 0  
/ . . . . . . .  : : loo. ( ,-k, ) 

t 
o.61- 

e'o., r - 

O. / t I I I I L I I t I I 
0.0 30.0 60.0 90.0 120. 150. 180. 

I~+ (degree) 

Figure 6 Local surface temperature distribution on the inner 
cylinder for ~=0.625 

cylinder for the pure conduction is opposite to that for the 
positive eccentric geometry shown in Figure 6. The surface 
temperature decreases monotonically from the bottom to the 
top of the cylinder. As Ra* increases, the location of the 
maximum surface temperature shifts gradually from the bottom 
toward the top of the inner cylinder. For  Ra* > 105, a tempera- 
ture profile similar to the cases described above can be clearly 
detected from the figure. 

Similar observations concerning the variation of surface 
temperature on the inner cylinder with specified heat flux have 
been reported in the previous study for heat flux boundary 
conditions. 4 Furthermore, from Figures 5-7 it can be seen that 
the local surface temperature profile of the inner cylinder is 
rather insensitive to the investigated range of variation for the 
Prandtl number. The magnitude of the maximum surface 
temperature on the inner cylinder of the uniform heat flux is 
also another quantity of practical interest and is listed in Table 1. 
For  comparison, the data of the maximum surface temperature 

available in Ref. 6 are also included in Table 1 and appear to 
be in good agreement with those predicted in the present study. 
Moreover, the maximum surface temperature for both e = 0 and 
0.625 can be well correlated via a least square regression with 
the modified Rayleigh number and the Prandtl number as 
follows: 

e=0:  0max = 3.09332(Ra*)- °191Pr -°'°15 (9a) 

104<Ra< 106, 0 . 7 < P r <  100 

e=0.625: 0ma, = 2.44619(Ra*)- °'173pr -°'°11 (9b) 

103 _< Ra* _<106, 0 . 7 < P r < 1 0 0  

The maximum deviations of the above correlations from the 
numerical data are 3.5 % and 4.5 %, respectively. For the results 
of the negative eccentric annulus e=  -0.625,  no satisfactory 
correlation was found. 

Local  heat f lux distr ibut ion 

Distribution of the local heat flux along the surface of the outer 
cylinder, qo, will now be presented. In considering a dimension- 

1 • 0 / i : Pr = 0.70 
I- .............. : = 7.00 , . . . . . .  : , o o  

o.8  • 
- Ra=0.0 

o.,  . o ,  ~ -  - - - - ~ ~ ~  lO .~... 

~ 1 0  6 

O -  I I I I I I I I I I I 
0.0 30.0 60.0 90.0 120. 150. 180. 

÷(degree) 

Figure 7 Local surface temperature distribution on the inner 
cylinder for s= -0 .625  

Table 1 Maximum surface temperature on the inner cylinder 

8m. . for Ra* 

Pr 103 104 105 10 e 

0.7 0.6484 0.4447 0.3317 0.2274 
7.0 0.6393 0.4286 0.3040 0.2037 

0.625 
50.0 0.6385 0.4265 0.2918 0.1 972 

100. 0.6381 0.4251 0.2877 0.1 948 

0.7 0.6962 0.5258 0.3479 0.2294 
(0.5055)* (0.3412)* 

7.0 0.6956 0.5139 0.3221 0.211 7 
0.000 

50. 0.6953 0,5131 0.3204 0.2076 
100. 0.6951 0,5127 0.3199 0.2055 

0.7 0.5629 0.4684 0.4454 0.2584 
7.0 0.5579 0.4488 0.4072 p.2387 

--0.625 
50. 0.5576 0.4486 0.4066 0.2372 

100. 0.5574 0.4484 0.4064 0.2365 

* From Ref. 6. 
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0 . 2  
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1.4 

1.2  

1.0 

0 . 8  
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Local heat flux distributions on the outer cylinder 

2.4 : Pr = 0.70 

2 . 2  ......... : = 100 .  7 0 6 1  

2 . 0  ~ s l "  
I .8  70 

1 .6  

1 .4  

1.2 704 

1.0 

0 . 8  

0 . 6  7 

0 . 4  ~ ~  

0 . 2  

O. ~ I I I I I 
180, 0 . 0  45.0 90.0 135. 180 
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Table  2 Maximum heat flux on the outer cylinder 

(Nuo)ma x for Ra* 

e Pr 103 104 10 B 10 s 

0.7 0.7205 0.7651 0.9446 1.1 928 
7.0 0.7173 0.7151 0.8637 1.0211 

0.625 
50.0 0.7150 0.7053 0.8225 0.9494 

100. 0.7142 0.7021 0.8176 0.8977 

0.7 0.6426 1.1998 1.3341 1.5994 
7.0 0.6411 1.1812 1.2394 1.3644 

0.000 
50. 0.6404 1.1 730 1.1 940 1.2401 

100. 0.6402 1.1 700 1.1 882 1.2140 

0.7 0.8229 1.0502 2.0333 2.3045 
7.0 0.8066 0.9677 1.8794 2.1803 

-0 .625  
50. 0.7985 0.9234 1.791 5 2.1406 

100. 0.7943 0.9088 1.7336 2.1 365 

less representation of the local heat flux, a local Nusselt number 
is defined as 

N u o = q ° = -  1+ (10) 
qi \ ~ , /  J ~rr 

Figure 8 conveys the angular distribution of the local heat flux 
along the outer cylinder of the three geometries considered for 
two values of Pr with various Ra*. The results for the concentric 
and negative eccentric geometries are qualitatively rather similar 
and will then be discussed together. At Ra*=  103, the local 
heat flux increases from the bottom to the top of the outer 
cylinder. With increasing Ra*, the angular variation of the local 
heat flux becomes more pronounced such that the heat transport 
is highly concentrated in the upper half of the outer cylinder. 
The heat flux at the bottom of the outer cylinder is rather 
negligible. For  the positive eccentric annulus, as expected for 
the case of pure conduction Ra* = 0, the heat flux decreases from 
the bottom to the top of the outer cylinder. With increasing 
Ra*, the heat flux dropoff (increase) along the bottom (upper) 
half of the outer cylinder exhibited in the figure manifests the 
intensification of the convective motion in the annulus. At 
Ra*= 106, a local heat flux distribution similar to those for 
e = 0 and -0 .625 is observed. The foregoing nature of the local 

heat flux distributions can be further inferred from the heatline 
distributions shown in Figures 1-4. 

Moreover, Figure 8 reveals that the local heat flux becomes 
more senstive to the variation of the Prandtl number with 
increasing Ra*, particularly for the peak values of the local 
heat flux on the outer cylinder, which are tabulated in Table 2. 
For  all Ra*, the maximum heat flux decreases with increasing 
Pr; specifically, a considerable decrease of about 17% can be 
observed by changing Pr from 0.7 to 7.0 for the case of e=0.625 
at Ra*= 106. Also, the increase of the maximum heat flux with 
Ra* displayed in Table 2 reflects the thinning of the boundary 
layer along the outer cylinder. Except for e = - 0.625, the results 
of the maximum heat flux on the outer cylinder tabulated in 
Table 2 agree well with the following correlations: 

e = 0.625 

Pr = 0.7, (NUo)m, = 0.3136(Ra*) °'°964 (1 la) 

104_< Ra* _< 106, max. deviation = 0.7% 

7<Pr_< 100, (Nuo)m,=0.4257(Ra*)°'°651pr -°'°428 ( l l b )  

104 < Ra* _< 106, max. deviation = 3.9% 

e=0.0 

Pr=0.7,  (Nuo)ma~=0.6668(Ra*) °'°624 

7 < P r <  100, 

(1 lc) 

104 < Ra* < 106, max. deviation = 2.5% 

(Nuo)m,x = 1.0776(Ra*)°'°171Pr -°'°217 ( l ld )  

104<Ra*<106, max. deviat ion=4.1% 

Average Nusselt number  

Finally, the average heat transfer results will be presented by 
means of the average Nusselt number, defined as 

qi L 1 
N U = k ( ~ -  To) (12) 

The circumferentially averaged Nusselt numbers obtained in 
the present study are given in Table 3 for various Ra* and Pr 
in the three annular geometries under consideration. Also 
included in Table 3 are the results based on the correlation for 
the concentric geometry reported in Ref. 6, which compare 
favorably with the results obtained in the present study. An 
overview of Table 3 reveals that only a slight effect of the 
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Table 3 Average Nusselt number 

1 ~  for Ra* 

Pr 10 3 10 4 10 5 10 e 

0.7 2.2724 3.2071 4.4821 6.8942 
7.0 2.2967 3.2097 4.5226 7.1130 

0.625 
50.0 2.3000 3.2129 4.5663 7.1794 

100. 2.3023 3.2142 4.5759 7.1881 

0.7 1.7311 2.7638 4.4184 6.7294 
(1.6744)* (2.7599)* (4.5385)* (7.4167)* 

0.000 7.0 1.7329 2.7670 4.4638 6.8678 
50. 1.7334 2.7698 4.4822 6.9000 

100. 1.7338 2.27732 4.4945 6.9412 

0.7 2.0486 2.6108 3.9119 6.3904 
7.0 2.0775 2.7207 4.0300 6.5909 

- 0 . 6 2 5  
50. 2.0800 2.7238 4.0412 6.6524 

100. 2.0812 2.7247 4.0500 6.6658 

* From Ref. 6. 

Table 4 Constants of Equation 13 for various 

C m n Ra* 

Max. 
deviation 

(%) 

0.625 0.7276 0.1617 0.0039 103-10 e 4.3 
0.000 0.4368 0.1997 0.0027 103-10 e 2.4 

- 0 . 6 2 5  0.4371 0.1936 0.0079 104 106 4.0 

8,0" 
7.0. 

6.0 

5.0 

4.0 

3.U 

2.0 

1.0 

0 . 6 2 5 ~  
~ =-0. 625"---'~ 0.00 ~ " 7 ~ - ~ ' - / / / " 0 ' 6 2 5  

000-  \ s .-z 

~ / ~ ' / / /  / : Present results, Eq.(,3) 

~ ~ : t : ~ m U a X l b : u n O a r i e  s413 
0.000__/ / ............ :. Isothermal bounOarles 

-0.652J 

103 . . . . . . .  '1~04 . . . . . . . .  i05 ' 'F~i',""~lO 6 . . . . . .  107 

Figure 9 Variation of average Nusselt number wi th modified 
Rayleigh number 

can notice that for the concentric annulus the heat flux 
boundaries yield the smallest average Nusselt number, providing 
the least favorable situation for the heat transport across the 
annulus among the three kinds of boundaries shown in the 
figure. Above all, the figure clearly demonstrates that the 
specification of different thermal boundary conditions has a 
significant influence on the average heat transfer rate across the 
annulus. 

Prandtl number in the investigated range exists on the average 
Nusselt number for the three configurations considered. The 
average Nusselt number increases slightly with increased Prandtl 
number. It can then be concluded that the average heat transfer 
rate across the annulus is mainly dependent on the modified 
Rayleigh number and the eccentricity. Accordingly, the present 
results can be correlated via a least square regression analysis 
in the form 

N~=  C(Ra*)"Pr", 0.7 < P r<  100 (13) 

where the constant C and exponents m, n are listed in Table 4 
for the three configurations considered here. 

In Figure 9 the average Nusselt number is plotted versus 
the modified Rayleigh number. For comparison, correlations 
reported for the similar configuration with isothermal 13 and 
heat flux boundary conditions 4 are also plotted in the figure. 
The correlations determined in Ref. 13 for isothermal boundary 
conditions were, however, expressed in terms of the conventional 
Rayleigh number Ra, not the modified Rayleigh number Ra*. 
Noting that Ra* = N~ Ra, their correlations can then be rewritten 
in terms of Ra* as follows: 

e= 0: Nu=0.4347(Ra*) °1955, Ra*>21364 (14a) 

e= 0.625: Nu--0.5827(Ra*) °'1763, Ra*>24165 (14b) 

e = - 0 . 6 2 5 :  ~=0 .3597(Ra*)  °'2°s9, Ra*> 19904 (14c) 

For all three geometries considered here, the average Nusselt 
number for the mixed boundary conditions is larger than that 
for the isothermal boundaries. An analogous finding was also 
reported in Ref. 6 for the air-filled concentric annulus. Closer 
examination of Figure 9 reveals that the increase of the average 
Nusselt number for the mixed boundary conditions is less 
prominent for the negative eccentric geometry due to its least 
favorable circumstance for natural convention. Further, one 

Concluding remarks 

Natural convection in concentric and eccentric horizontal 
cylindrical annuli with mixed boundary conditions is analyzed 
numerically via a finite difference method. The heat and fluid 
flows in the annuli have been vividly visualized by means of 
contour maps of heatlines and streamlines. The numerical 
results obtained further indicate that heat and fluid flow 
patterns in the annuli are primarily dependent on the modified 
Rayleigh number and eccentricity and are rather insensitive to 
the investigated Prandtl number range. Particularly, no apparent 
dependence of Pr can be detected for Pr>7 .  Above all, the 
heat transfer results show that the specification of different 
thermal boundary conditions has a significant influence on the 
average heat transfer rate across the annulus. 
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